Florian Eigner | Dr. Sascha Ullmann

Biomechatronische Systeme zur Steigerung der Ergonomie im Operationssaal - BiSOP

Zeitraum: Fördermittelgeber: 01.08.2024 – 31.07.2027 Sächsische Aufbaubank

imk Health Intelligence GmbH

Fiber Check GmbH

TU Chemnitz, Professur Adaptronik & Funktionsleichtbau

Universität Leipzig, Zentrum zur Erforschung des Stütz- und Bewegungsapparates

www.imk-ic.com

Warum ein Exoskelett für den OP?

Alternde Erwerbsbevölkerung erhöht den Bedarf an gesundheitserhaltenden Maßnahmen

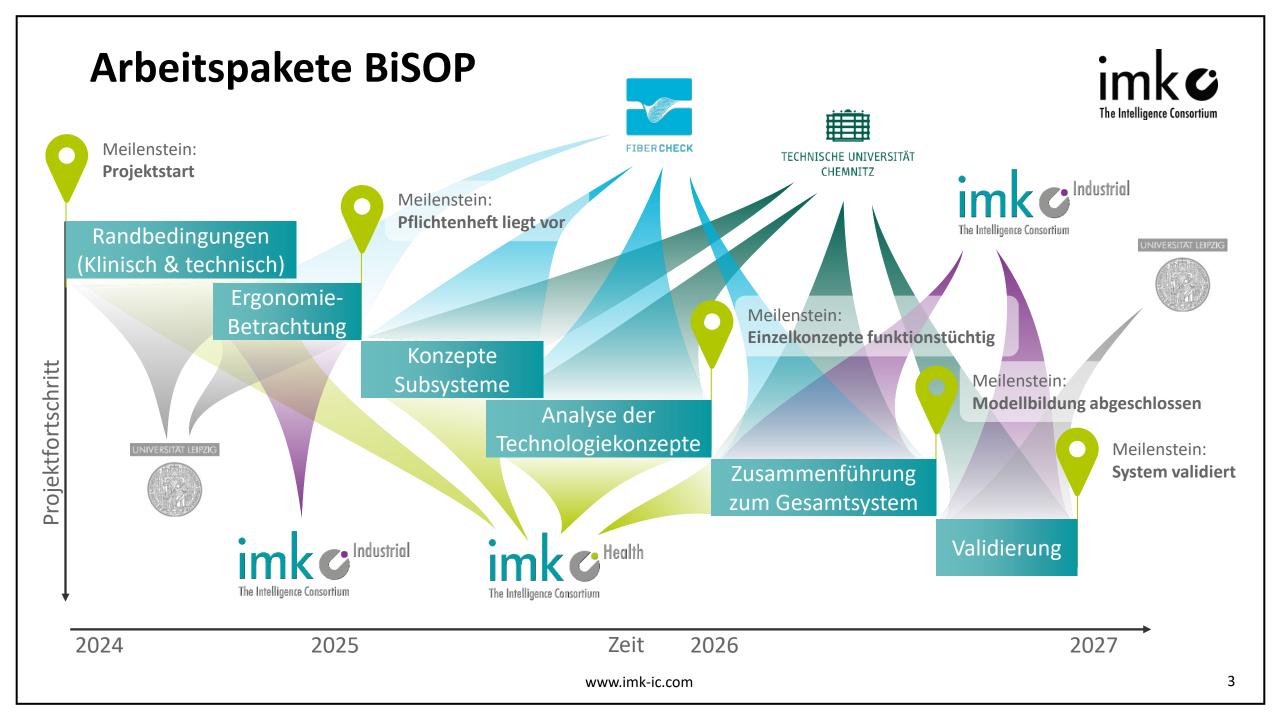
- Altersstruktur von 465 000 Ärztinnen und Ärzten in Human- und Zahnmedizin:
 - 19,2 % sind 60+ Jahre alt
 - 46,9 % sind 50+ Jahre alt

Spezifische Anforderungen im OP-Bereich sind aktuell durch kein Exoskelett auf dem Markt erfüllt

- Kraft- und Ausdauerunterstützung im Hand-Finger-Bereich
- Erkennung und Unterstützung von Griffen
- Energieloses Halten von Griffpositionen
- Keine Einschränkungen beim präzisen Arbeiten

Ausdauernde Haltekraft

Verbesserte Feinmotorik



Echtzeit-Sensorik

Bewegungsfreiheit

www.imk-ic.com 2

Ziele des Forschungsprojektes BiSOP

Projektpartner übergreifend

Erforschung von Technologien zur Entwicklung eines neuartigen Unterarm-Exoskeletts für den klinischen Alltag

- Aktive Kraftunterstützung im Hand-Finger-Bereich
- Aktive Unterstützung der Bewegungsführung
- Unterstützung der Hand-Finger-Position bei statischen Fein- und Grobmotorik-Aufgaben
- Einsatz in diversen Operationsszenarien
- Unterstützung bei ermüdender Haltearbeit
- Erhalt der Konzentrationsfähigkeit bei ausdauernden Belastungen

Projektgegenstand der imk Health

Die imk Health Intelligence GmbH ist im Projekt verantwortlich für die Umsetzung der Antriebsbewegungen.

Defizitanalyse der bestehenden Systeme

- Welche Systeme gibt es?
- Wie werden diese aktuiert?
- Was haben diese Systeme f
 ür Vor- und Nachteilen

Entwurf, Erprobung und Bewertung neuartiger Kraftübertragungsmechanismen

- spezieller Seilzug
- Unter-aktuierte Systeme
- Getriebe aus (teil-) nachgiebigen Strukturen

Antriebstechnologien zu Bewegungsführung

- mit welchen Aktuatoren bewegt man das Exoskelett
- Elektrische Antriebe sinnvoll ja/nein?
- Fluidische Antriebe sinnvoll ja/nein?

Mechanismen zu Bewegungsführung

... Welche Möglichkeiten hat man, die anatomische Bewegung nachzubilden (ohne Antrieb), um möglichst geringe Querbelastung zu erzeugen

www.imk-ic.com 5

Identifikation der Anwendungsszenarien

Zur Identifizierung der Anforderungen wurde eine Vorstudie durchgeführt.

- Körperteile halten/lagern
- Hämmern/Schlager
- Instrumente halten
- 4. Fraktur-

#1 Instrumente halten

#3 Haken halten

BEI WELCHEN TÄTIGKEITEN IM OP BENÖTIGEN SIE DIE

BISOPI S. Schleifenbaum, L. Tiesler


BISOP| S. Schleifenbaum, L. Tiesler

MEISTE KRAFT?

Gewichtet

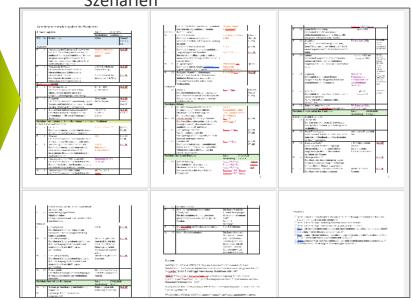
- Instrumente halten
- Schrauben drehen
- 3. Nähen und Knüpfen
- Hämmern/Schlagen

ZESBO 10

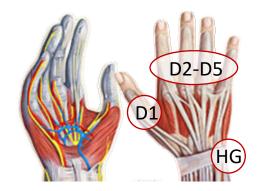
Auswertung der Vorstudie

Mittels eines Brainstormings wurden die drei relevanten Tätigkeiten identifiziert.

The Intelligence Consortium


Fragestellung des Brainstormings:

- Wo und Wie muss ich für den Fall unterstützen?
- Was muss ich während des Betriebs mit Sensoren messen?


Ableitung einer Anforderungsliste für das Gesamtvorhaben:

- Globale Anforderungen
- Anforderungen bzgl. der Teilfunktionen
 - Kraftverstärkung
 - Selbsthemmung ja/nein
 - Steifigkeit des Antriebs
 - Latenz in der Reglung für verschieden Szenarien

Kurze Erläuterung der äußersten oberen Extremitäten

- Die 5 Finger sind mit D1 bis D5 eingeteilt
- D1 ist dabei der Daumen
- HG steht auf den folgenden Folien für Handgelenk

Auswertung der Vorstudie

Durch Überlagerung der jeweiligen Tätigkeiten ergeben sich die Anforderungen.

Haken halten		Schrauben			Instrumente			Informat	ion	
Gelenke/Extrasbzw. Unterstützung		D1	D2	D3	HG HG		Ī	Informationsbasis Ende 2024		
					Flex/ Ex	Pro/Sup	Ad/Ab			2024
Flexion / Abduktio / Pronation	Antrieb									
	Fixieren									
	Dämpfung (passiv)									
	Bewegungsfreiheit									
Extension / Adduktion / Supination	Antrieb									
	Fixieren							D2-D5		
	Dämpfung (passiv)									
	Bewegungsfreiheit									
Ansteuerungsfrequenz bis 7 Hz									01	
Schnelle Bewegung (80% Hub/1s)									HG	\
Abstützung quer zur Bewegung										
Kraftfeedback										

Auswertung der Vorstudie

Durch Überlagerung der jeweiligen Tätigkeiten ergeben sich die Anforderungen.

Antrieb in 2/3 Fällen Gemeinsamkeit Handgelenk Flexion: Informationsbasis Ende 2024 Antrieb in allen 3 Fällen sinnvolle Ergänzung Gemeinsamkeit Finger: Theor. Nur Flexion erforderlich HG D1 D2 D3 Gelenke/Extrasbzw. Unterstützung Antrieb und Fixierung von D1 – D3 Flex/ *x Pro/Sup Ad/Ab Antrieb Flexion / Fixieren Abduktia / Pronation Dämpfung (passiv) Bewegungsfreiheit Antrieb Antrieb und Fixierung in 2/3 Fällen Extension / Fixieren Adduktion / Supination Dämpfung (passiv) Bewegungsfreiheit

2 Übereinstimmungen Abduktion

Ansteuerungsfrequenz und "schnelle Bewegung":

2 Übereinstimmungen

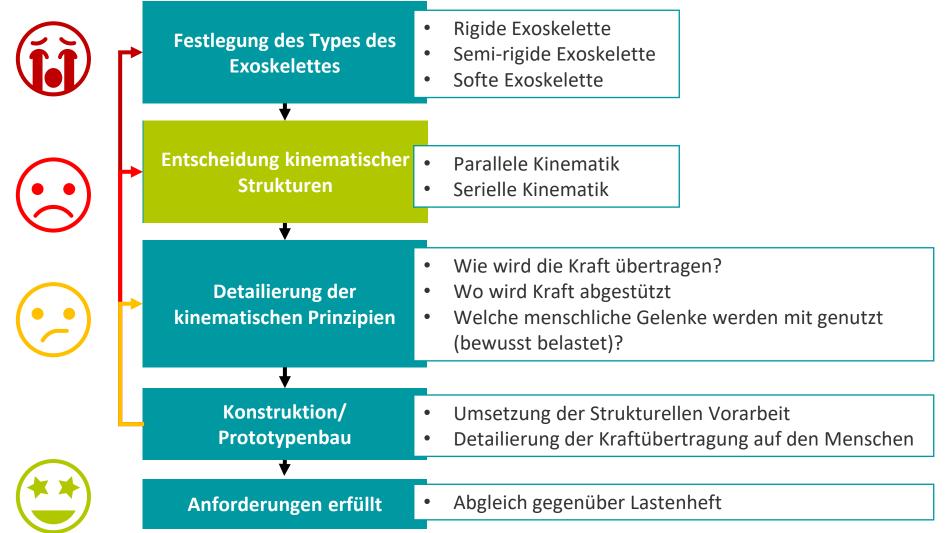
Handgelenk Extension:

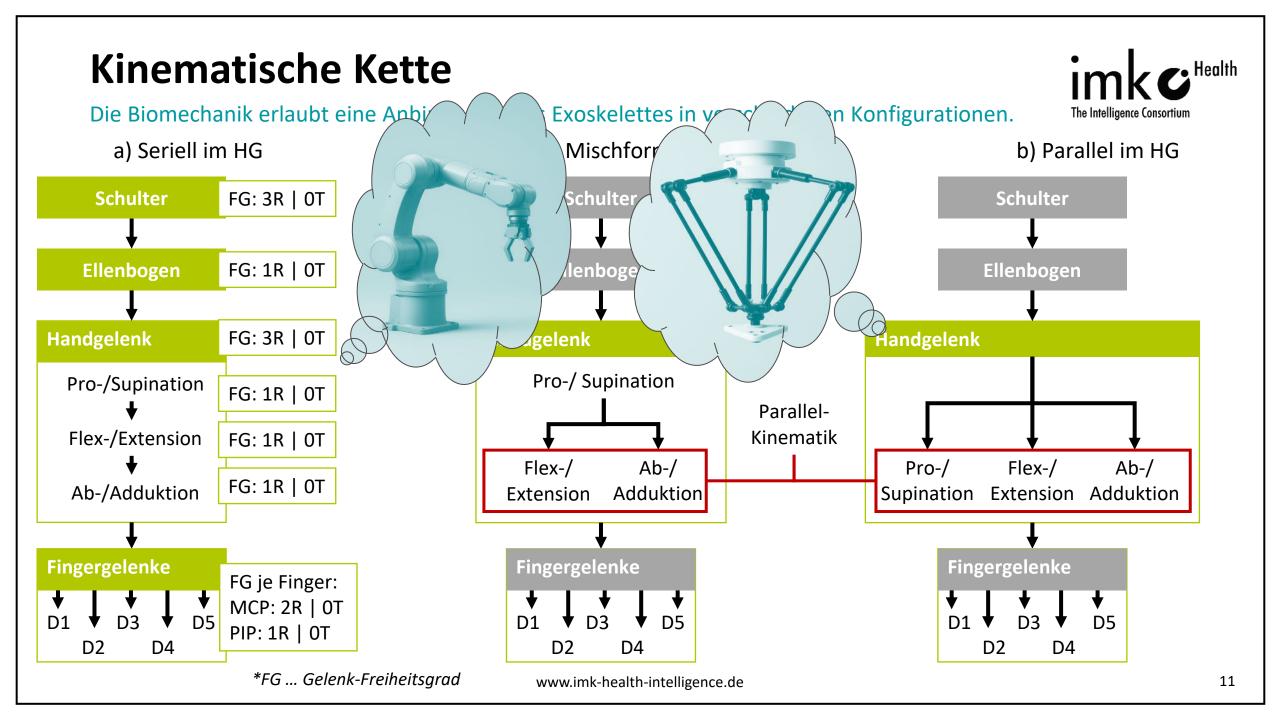
notwendig

Bestimmte Bewegungen müssen schnell ausgeführt werden können, damit sie nicht als hinderlich wahrgenommen werden.

Ansteuerungsfrequenz bis 7 Hz

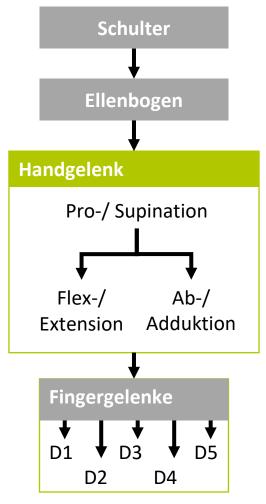
Schnelle Bewegung (80% Hub/1s)


Abstützung quer zur Bewegung


Kraftfeedback

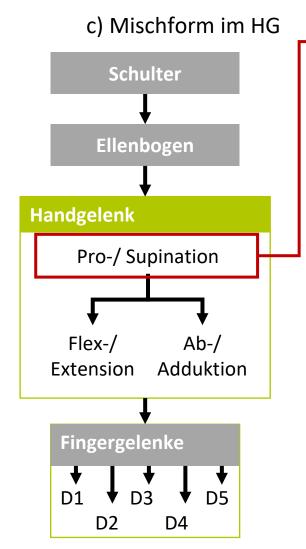
Entwicklungsschritte im Projekt

Die Entwicklung des Exoskelettes im Projekt BiSOP unterliegt einem iterativen Vorgehen.



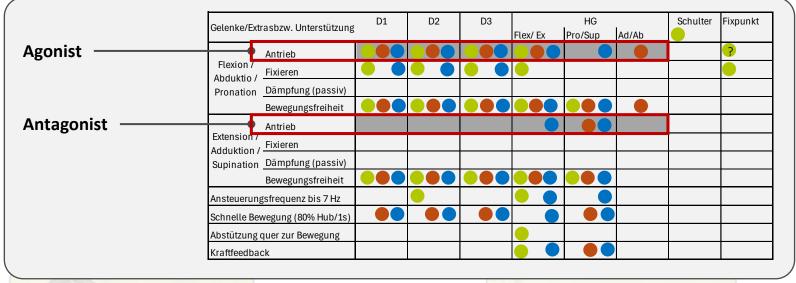
Kinematische Kette

Die Biomechanik erlaubt eine Anbindung eines Exoskelettes in verschiedenen Konfigurationen.


c) Mischform im HG

Startpunkt für die Entwicklung

Die Bandbreite der Entscheidungen ist n-dimensional: Kinematische Kette, Wirkprinzip, Detaillösung. The Intelligence Consortium


→ Wir greifen uns einen Startpunkt für die Entwicklung heraus

Aktuierter Mechanismus

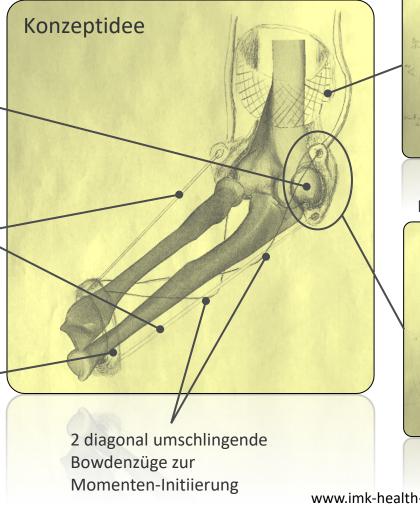
- Unterstützung Elle-Speiche-Rotation
- Unterstützung des gesamten Bewegungsbereiches
- Angenehme Kraftübertragung

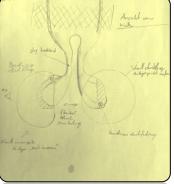
Antriebseinheit

- Ausreichend Antriebskraft
- Ausreichend Hub
- Agonistischer und Antagonistischer Antrieb
- Bauraum zunächst nebenrangig

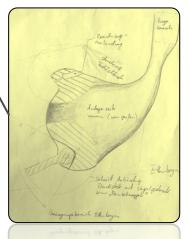
Konzept für Pronation und Supination

Von Konzeptzeichnungen zum ersten CAD-Entwurf.

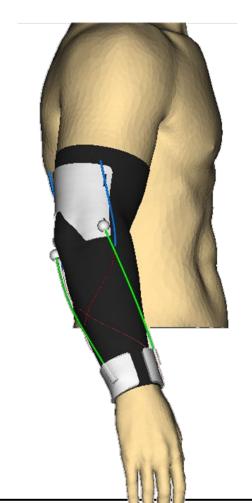

Oberarm-Manschette zur oberen Fixierung



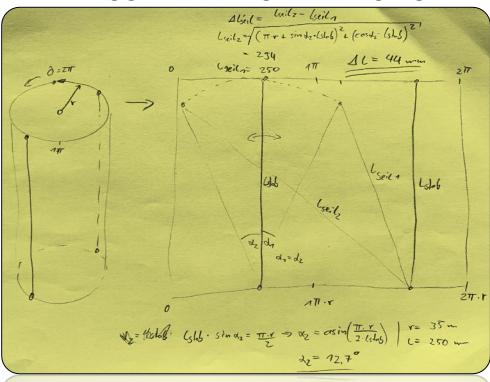
Nutzung des Knochenvorsprungs an der Innenseite des Humerus als Momentenstütze


Zwei Druckstäbe parallel zu Ulna und Radius

Formschluss zur Momentenübertragung am HG


Detailansicht Momentenstütze

Entwurf eines ersten CAD-Modells



Konzept für Pronation und Supination

Das Wirkprinzip beruht auf der Torsion eines Zylinders. Dieser Zylinder kann für eine überschlägige Berechnung abgewickelt werden.

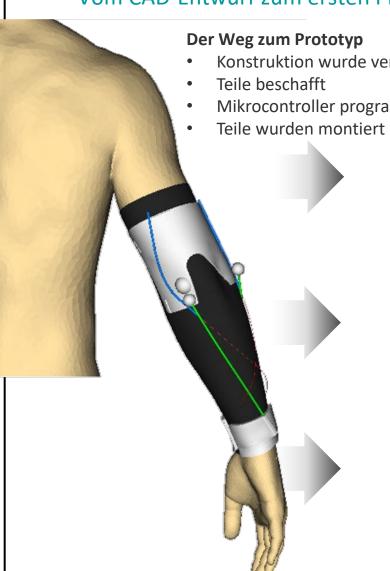
Überschlägige Berechnung des Seilzugweges:

Vereinfachungen für die überschlägige Berechnung

- Unterarm ist zylindrisch → jeder Unterarm hat eine individuelle meist konische Form
- Die Pro- /Supination deckt eine Bewegungsradius von 180° ab →
 Bewegungsumfang individuell unterschiedlich

Kurzbeschreibung des Konzeptes:

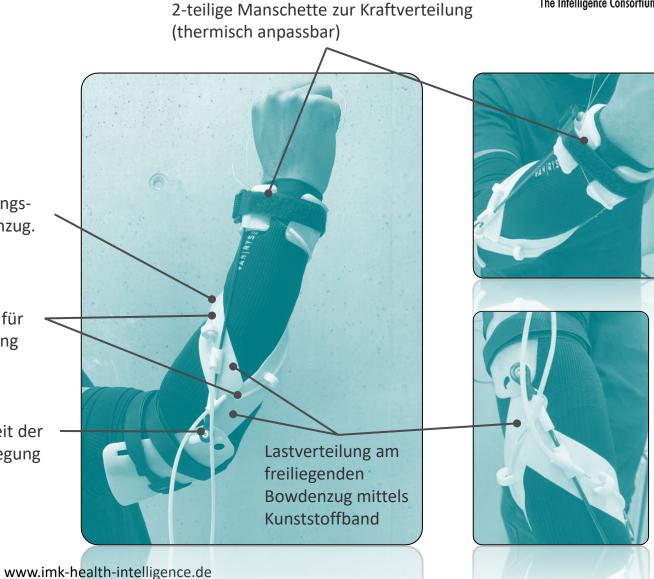
- Ulna und Radius werden im Exoskelett durch Druckstäbe mit ähnlicher Lage abgebildet
- Die Rotation wird durch diagonal verlaufende Seilzüge initiiert.
- Bei einer Rotation von +-90°, einer Stablänge von 250mm und einem Durchmesser von 70m ergibt sich in erster Annäherung ein $\Delta l=44~mm$ des aktuierenden Seiles.


Dieser Hub wurde experimentell validiert

Konzept für Pronation und Supination

16

Vom CAD-Entwurf zum ersten Prototyp.


Konstruktion wurde verfeinert

Mikrocontroller programmiert

180° Umschlingungswinkel je Bowdenzug.

Schwimmende Bowdenzughülle für optimierte Reibung

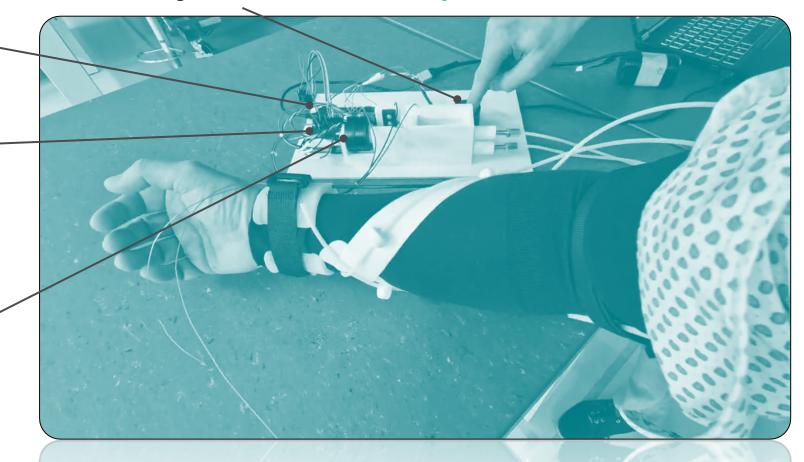
Kugelgelenk für Bewegungsfreiheit der Ellenbogen-Bewegung

Prototyp für Pronation und Supination

The Intelligence Consortium

Ein erster Test des Prototyps – Es bewegt sich was!

Steuerung: Magnetischer Encoder



Mikrocontroller: **Teensy 4.1**

Motortreiber: Simple FOC Mini

Antriebsmotor: **GM3506** → BLDC

Gimbalmotor

Learnings aus dem Prototyp

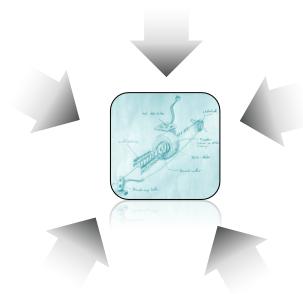
Der erste Prototyp hat Potenzial für Verbesserungen.

- Kompressibilität des Unterarms sorgt für den größten Hubverlust
- Bewegungsumfang für Flex-/Extension und Ab-/Adduktion durch Manschette gehemmt → Manschette optimieren
- Kraftübertragung der Manschette muss über die Flanken geschehen
 → individuelle Anpassung
- Schnellverschlusssystem für Bowdenzüge implementieren
- Nicht-Linearität von Agonist und Antagonist berücksichtigen

- Drucksteifigkeit der Bowdenzughülle unzureichend für Pronation/Supination
- → drucksteifere Hülle

- Bewegungsumfang vergrößern
 - Endlos Förderung
 - Lösung mit Aufwickeln besser geeignet
- Selbsthemmung effektiv vermeiden
- Bauraum reduzieren

- Sensorik
 - Wie bekommen wir die Intension des Nutzers erfasst?
 - Welcher Parameter müssen wir dafür tracken?


Learnings aus dem Prototyp

Mit Getriebe läuft's besser.

Zusätzliche Bowdenzug-Umlenkung erforderlich

Direktantrieb erfordert hohe Drehmomente vom Motor

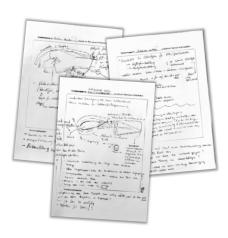
Größerer Bewegungsumfang vergrößert direkt die Antriebseinheit

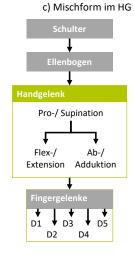
Aus einem Projekt mit:

Eine Antriebslösung mit einer Einrichtung zur Bewegungsumformung (Getriebe) scheint unumgänglich zu sein

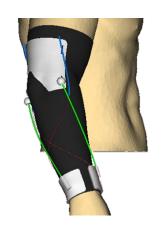
Spindelsteigung legt Selbsthemmung fest

Übersetzung (Drehschubstrecke) ist durch Spindelsteigung limitiert





Der Blick auf das Ganze


Zusammenfassung zum aktuellen Zeitpunkt – das Projektziel im Blick.

Randbedingen erarbeitet

Strukturelle Lösungen

Kinematischen Prinzipien

Detailierung und Konstruktion

Prototyping

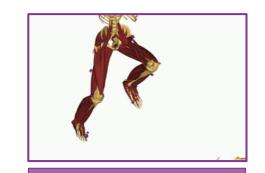
Haltekraft

Verbesserte Feinmotorik

→ Simulation der Interaktion zwischen Exoskelett und Mensch durch imk Industrial Intelligence GmbH

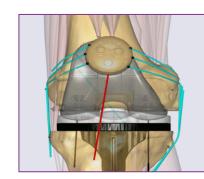
Projektgegenstand der imk Industrial

Die imk Industrial Intelligence GmbH ist im Projekt verantwortlich für die simulative Ergonomiebetrachtung


www.imk-ic.com 21

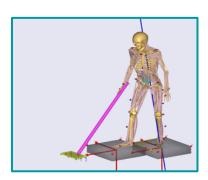
Vorteile biomechanischer Simulation

Einsatz von Simulationstools zum schnellen & kosteneffizienten Design


Biomechanische/physiologische Bewertung von Exoskeletten/Orthesen/Prothesen

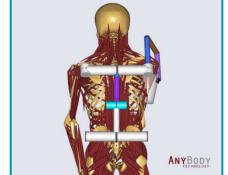
Sport

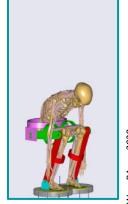
movaid


Orthoädpie

ALSTOM

Test & Optimierung von


- Designvarianten in der Entwurfsphase
- Verschiedenen Anwendungsfällen
- Spezifische Nutzerpopulationen


Integration von **CAD-Daten** & reale Bewegung per **Motion Capturing**

Konsumprodukte

Exoskelette

Quelle: Wear

Softwaresysteme zur Modellierung

Vergleich & Auswahl des im Forschungsprojekt zu verwendeten Systems

inke Industrial The Intelligence Consortium

OpenSim

- Open Source Software
- Simulation & Auswertung von Muskelaktivität & Gelenkwinkel/-momente
 - Modelle von Hand/Fingern nur begrenzt verfügbar, Aufwand zur Anpassung/Entwicklung eines präzisen Handmodells sehr hoch
- Begrenzte Berücksichtigung von externen Lasten & Arbeitsumgebung
- Hand-Model basiert auf Daten eines einzelnen Kadavers ⇒ begrenzte allgemeine Anwendung

OpenSim

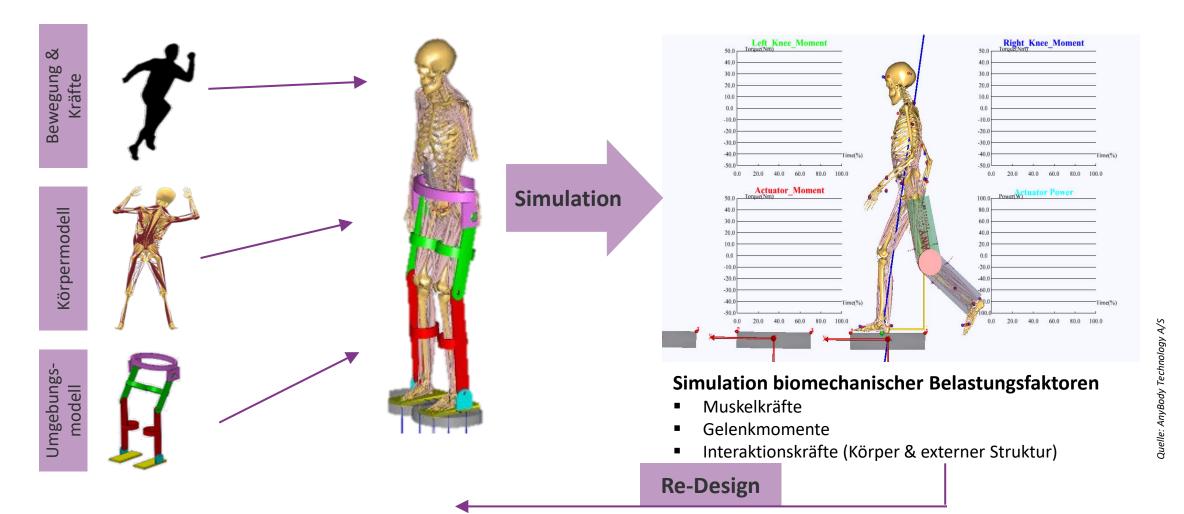
demoa

- Entwickler: TU Delft
- Open Source Software zur muskuloskelettalen Modellierung
- aktuell kein Handmodell vorhanden.

demoa

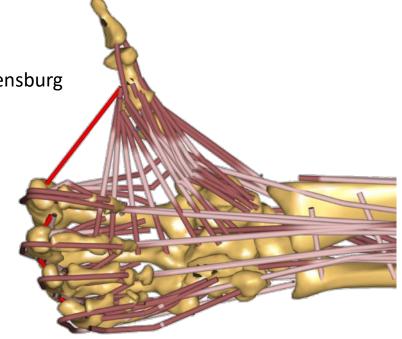
A biophysics simulator for muscle-driven systems.

AnyBody Modeling System


- Hersteller: AnyBody Technology A/S
- Simulation & Auswertung von Muskelaktivität & Gelenkwinkel/-momente
 - Detaillierte Modelle der Hand & der Finger verfügbar
 - ⇒Regensburg-Ulm Hand Model (RUHM) von Engelhardt & Melzner

AnyBody Modeling System

Ein Tool zur biomechanischen Simulation von AnyBody Technology A/S



Regensburg-Ulm Handmodell (RUHM)

Modell im AnyBody Modeling System

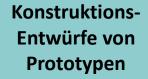
Entwickelt durch Universität Ulm & Ostbayerische Technische Hochschule Regensburg

- **Detailliertes Handmodell** mit **22 Handsegmente** (inkl. Elle und Speiche) als Starrkörper mit physiologisch idealisierten Gelenken → insgesamt **31 DOF**
- Distales & Proximales Interphalangeal als Drehgelenke, Metacarpophalangeal als Kugelgelenk
- Bewegung Daumen über mehrere Drehgelenke

Nutzung von Experiment & Simulation im Projekt

Iterative Vorgehensweise für virtuelle Varianten-Tests

Experiment zur Erhebung von:

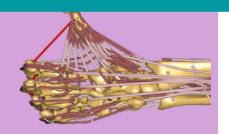

- Externe Kräfte
- Bewegungsdaten

Werbevideo

AnyBody-Simulation Analyse Ist-Stand

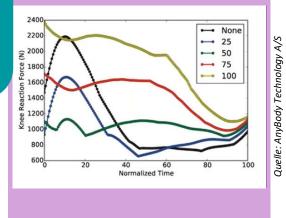
Verwendung Regensburg-Ulm Handmodell (RUHM)

Integration in


Input:

- MoCap-Naten (*.
- Handlän & Arm

Output:


- Muskelaktivitäten
- Gelenkmomente

Schnelles & kostengünstiges
Erreichen eines ergonomisch
günstigen Designs durch iterative
virtuelle Varianten-Tests

Test von PrototypVarianten in AnyBodySimulation

z.B. unterschiedliche Unterstützungswirkung Anbindungspunkte Skalierungen

Probandenstudie durch Projektpartner Universitätsklinikum Leipzig

Untersuchung von 3 identifizierten Use-Cases | 15 Versuchspersonen

Use Cases

Messdaten

Haken halten Wunde offenhalten mit Wundhaken Kraft zum Auseinanderziehen der Wundöffnung

- Motion Capturing (Leap Motion)
- Handkraftmessung
- Axialkraft & Biegemoment des Hakens

Schrauben eindrehen

Schrauben in Knochengewebe eindrehen mit Schraubenzieher

Druck auf Schraubergriff & **repetitive Bewegung** des Handgelenks / Unterarms

- Motion Capturing (Leap Motion)
- Handkraftmessung
- Drehmoment des Schraubers

Nähen Wunde

Vernähen einer Wundöffnung mit Nadelhalter

Repetitive Bewegung des Handgelenks / Unterarms (Nadelhalter in geschlossener Position fixiert)

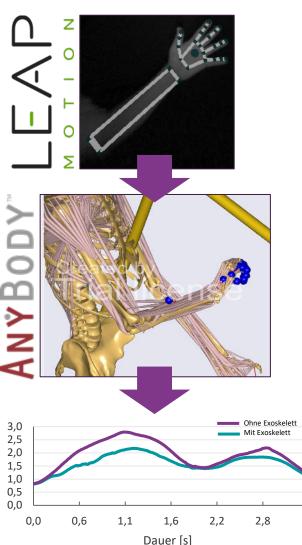
Motion Capturing (Leap Motion)

1 x subjekt-spezifische Maximalkraft mit Handkraftmessgerät

Aufbau Simulationsmodell

Entwickelte Vorgehensweise zur weiterführenden Simulation & Variantenvergleich

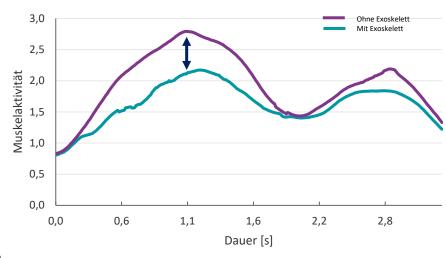
Konvertierung der MoCap-Daten von .json (Leap Motion) zu .c3d per Python-Skript



Erstellung des AnyBody-Models

- Input
 - MoCap-Daten (*.c3d)
 - Handlänge & Armlänge zur Skalierung
 - externe Kräfte
 - Exoskelett-Daten (CAD, Kontaktpunkte Mensch, Unterstützungswirkung)
- Modell-Anpassung
 - Marker-Mapping Leap Motion & AnyBody
 - Verbindung MoCap Modell AnyBody & RUHM
 - Initiale Position Menschmodell auf Basis MoCap
- Automatische Berechnung von Bewegung & inverser Dynamik
- Output (Auswahl)
 - Gelenkmomente im Handgelenk
 - Muskelaktivitäten der Fingerbeuger & Unterarm

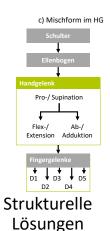
Automatisierte Aufbereitung des Outputs mittels Python-Skript


Ergebnisse der Simulation

Potentialanalyse mittels AnyBody Modeling System

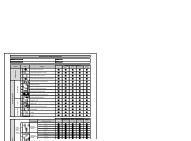
- Abgleich der Belastungsfaktoren ohne Exoskelett vs. mit Exoskelett
 - Anhand der Bewegung des Ist-Zustandes
- Evaluierung von Prototyp-Varianten in AnyBody z.B. hinsichtlich
 - Unterstützungspotential (Reduktion der aufzubringenden menschlichen Kraft, Unterstützungswirkung Exoskelett)
 - Position & Ausgestaltung der Verbindungsstellen zum Körper
 - Abmessungen (z.B. Teillängen) des Exoskeletts

- Auswahl der Prototypen-Vorzugsvariante
 - auf Basis Nutzwertanalyse


Der Blick auf das Ganze

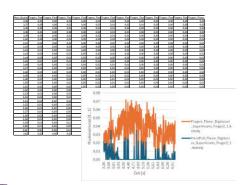
Zusammenfassung zum aktuellen Zeitpunkt – das Projektziel im Blick.

Randbedingen erarbeitet


Kinematischen

Prinzipien

Detailierung und Konstruktion Prototyp


Simulationstool ausgewählt

Aufbau Modell

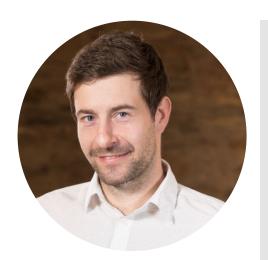
Modelltransfer auf 1. Testdaten

1. testweise Auswertung

Ausblick

Die nächsten Schritte im Projekt

- Probandenstudien ab Q3/2025
- → Anreichung der Simulation mit Probandendaten & Auswertung
- Kontinuierliche Weiterentwicklung auf Basis der Erkenntnisse aus Experiment & Simulation


Kontakt

Dr. Sascha Ullmann

Bereichsleiter
Digitale Planung & Ergonomie
+49 (0) 172 462 68 42
sascha.ullmann@imk-ic.com
www.imk-industrial-intelligence.com

Florian Eigner

Entwicklungsingenieur
Antriebstechnik & Verzahnung
+49 (0) 371 400 97 334
florian.eigner@imk-ic.com
www.imk-health-intelligence.de